野花视频app下载
课程名称: 教师:
当前位置:
 >> 
 >> 
Discovery and Fundamental Studies of Phase Transformative Materials for Energy Application
Discovery and Fundamental Studies of Phase Transformative Materials for Energy Application
教师介绍

本讲教师:刘奇
所属学科:理科
人  气:1079

课程介绍
Abstract:   Because of their high energy density, lithium ion batteries (LIBs) have become a rapidly growing energy storage technology, particularly in mobile applications, such as portable electronics, hybrid electric cars, etc. The cathode materials are considered to be the performance-limiting factor in research designed to increase cell energy and power density. During the cathode materials exploration, the advanced synchrotron-based characterization techniques, such as high-resolution synchrotron X-ray diffraction (HRXRD), in situ high-energy synchrotron X-ray diffraction (HEXRD), and in situ X-ray absorption spectroscopy (XAS), provide novel and powerful tools for exploring the structure evolution of battery materials. In my presentation, firstly I will briefly introduce how synchrotron-based techniques could be utilized for phase identification, fundamental study of structure dynamics, reaction mechanism, and doping mechanism during the cathode material exploration. Then, the presentation will be centered on the fundamental studies of V2O5 and LiCoO2 as the cathode materials for Li-ion batteries. Typically, the in-depth investigation of phase transformation behavior in V2O5-based and LiCoO2 in Li-ion batteries has been studied using advanced in situ synchrotron techniques. Take the LiCoO2 for example, theoretical and experimental investigations have shown that, when LiCoO2 is delithiated, the material will experience a series of phase transitions. Initially, there will be an insulator-metal transition in the low voltage region, resulting in a two-phase region. As the material continues to deintercalate and when approximately half of Li+ are removed from LCO, the material will experience an order-disorder transition, which drives the phase transition from the hexagonal structure to the monoclinic structure. Further delithiating LCO tends to induce the O3-O6(H1-3)-O1 phase transition process. Consequently, the unexpected phase transition and low Li+ diffusion at high voltage >4.3V prevent the lithium cobalt oxide from meeting the high-energy requirement. Here we develop a novel atomic-level multiple-element method to dope the LCO crystal structure with multiple elements. The resulting doped LiCoO2 (D-LCO) can withstand the increase in cell potential and still allow efficient lithium ion transport at high voltage, which exhibits extraordinary electrochemical performance: a high capacity of 190 mAh/g, approaching 70% of theoretical specific capacity of LiCoO2; a long cyclability (96% capacity retention over 50 cycles with a cut-off voltage of 4.5 V vs Li/Li+); and significantly enhanced rate capability. Such performance is the result of the combined effects of multiple doping elements on structural stability and lithium ion diffusion, which is supported via various electrochemical studies and synchrotron-based characterization. Especially, during the high voltage range, the O3-O6(H1-3)-O1 and order/disorder phase transition has been greatly suppressed. 报告人简介:   刘奇博士, 香港城市大学物理系助理教授, 于2014年12月毕业于普渡大学机械工程学院。2014.12~2018.3在美国阿贡国家实验室先进光子光源部(APS)从事做博士后研究。目前主要致力于原位同步辐射技术在电化学反应、微波化学合成反应、材料合成、能量储存和转化等过程中原位检测、反应机理和反应动力学研究方面的应用;已在物理、化学、材料和工程领域做出众多原创性和突破性的工作。除了已经再包括Nature, Nature Energy, Nature Communications, JACS, Nano Letters, EES, Nano Energy, Journal of Materials Chemistry, ACS Applied Materials Interface, Electrochimica Acta 等国际知名期刊上发表高水平论文外,还作为第一负责人,搭建过国际上首台原位同步辐射和化成技术的综合测试平台, 被美国能源部专家认为“为微波反应的机理研究提供了一个划时代的研究手段”。其多项研究成果不仅得到了相关领域国际学术届的广泛认可和关注,也引起了工业界的广泛兴趣。

妖妖直播app下载

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:21910703
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602929;E-mail:wlkt@ustc.edu.cn。

扫一扫,手机版

卖肉直播app下载 酷咪直播下载app 雨燕直播app下载 月色直播app下载 豆奶抖音短视频下载app 水蜜桃app下载 黄鱼视频下载app视频免费最新 蓝精灵直播下载app 小蝌蚪视频下载app 咪哒直播app下载 性福宝下载app 泡芙下载app 快猫短视频下载app 水果视频下载app 千层浪直播app下载 嘿嘿连载app下载 花姿直播app下载 夜魅直播下载app 内裤直播下载app 葡萄视频下载app 小蝌蚪app下载 Avnightapp下载 91香蕉下载app 彩云直播下载app 含羞草实验研究所app下载 富二代短视频下载app 丝瓜视频污下载app 小草莓下载app 菠萝菠萝蜜视频app下载 圣女直播app下载 后宫视频下载app 逗趣直播app下载 卖肉直播下载app 草莓app下载 好嗨哟直播下载app 恋人直播app下载 小草莓app下载 红楼直播下载app Huluwaapp下载 Avboboapp下载 蓝精灵直播下载app 四虎下载app视频免费最新 金屋藏娇直播间下载app 七秒鱼app下载 富二代f2app下载 斗艳直播app下载 小仙女app下载 黄瓜app下载 七仙女直播app下载 黄瓜直播下载app 佳丽直播下载app 草莓视频下载app 夜猫视频下载app 花心社区app下载 斗艳直播app下载 秀色直播app下载 七仙女直播下载app 春水堂下载app 久草视频下载app 麻豆传媒视频app下载 享爱下载app 柠檬直播下载app 玉米视频下载app 心上人直播下载app 大西瓜视频app下载 麻豆传媒映画下载app 久草视频下载app视频免费最新 享受直播下载app health2app下载 草榴直播app下载 性福宝下载app 水仙直播下载app 微啪app下载 小宝贝直播app下载 小狐仙直播下载app 茄子视频下载app 男人本色西瓜视频下载app 食色下载app 萝卜视频下载app 含羞草视频下载app 91香蕉app下载 ML聚合app下载 A头条app下载 柠檬直播app下载 Avnight下载app 千层浪视频app下载 豆奶app下载 探花直播app下载 月色直播app下载 月亮直播app下载 草榴短视频下载app 小宝贝直播下载app视频免费最新 草榴视频下载app视频免费最新 樱花下载app 大菠萝下载app 微啪app下载 鲍鱼视频下载app AVnightapp下载 茄子视频app下载 泡泡直播app下载 成版人音色短视频app下载 iAVBOBOapp下载 ML聚合直播app下载 樱桃app下载 成版人快手下载app 菠萝蜜视频app下载 秋葵视频app下载 花姿下载app视频免费最新 7秒鱼下载app 污软件下载app视频免费最新 粉色视频app下载 媚妹秀app下载 红颜app下载 夜魅直播app下载 比心直播下载app 秀色小抖音下载app 蜜桃app下载 微杏下载app 蜜柚下载app JAV名优馆下载app 柚子直播app下载 JOJO直播下载app 美岁直播app下载 红玫瑰直播下载app 芭乐视频下载app 骚虎直播下载app 云雨直播app下载 豆奶短视频app下载 秀色小抖音app下载 麻豆视频下载app 茶馆视频app下载 草榴直播app下载 金鱼直播app下载 大西瓜视频app下载 久草视频app下载 豆奶抖音短视频app下载 花心视频app下载 麻豆传媒视频app下载 乐购直播app下载 水果视频app下载 杏花直播app下载 梦幻直播下载app 夜遇直播号下载app 91香蕉视频下载app 享爱直播app下载 樱花app下载 大番号app下载 豆奶app下载 s8视频app下载 柠檬视频app下载 小奶狗下载app d2天堂下载app 水晶直播app下载 梦幻直播下载app 橙子视频下载app 豌豆直播下载app 享爱app下载 灭火卫视下载app视频免费最新 豆奶app下载 梦鹿直播app下载 恋夜秀场app下载 杏花直播app下载 梦幻直播下载app 午夜直播间app下载 性直播下载app 夏娃直播app下载 香蕉直播app下载 草莓下载app 猫咪视频下载app